COVER CROP MIXTURES
Crimson clover can be grown as a monoculture or in combination with annual ryegrass, cereal grains, and other winter annual legumes. When sown in combinations with companion crops, plant crimson clover at 2/3 of the normal rate, and the other crop at 1/3 the monocultural rate. For example, when sown in combination with annual ryegrass with a drill, the recommended seeding rate is 10-15 lbs/acre crimson clover and 5-10 lbs/acre annual ryegrass. Other cover crop mixtures include 10-15 lbs/acre crimson clover sown with one of the following: 30-40 lbs/acre of cereal rye, 3-5 lbs/acre of oilseed radish, or 40-50 lbs/acre of spring oats. Planting crimson clover with more than 2 other cover crops is not recommended.

BENEFITS OF USING CRIMSON CLOVER AS A COVER CROP:
• Nitrogen Fixation
• Improve Soil Quality
• Weed Suppression
• Erosion Control
• Attracts Beneficial Insects
• Builds Soil Organic Matter
• Increases Moisture Holding Capacity
• Reseeding potential in perennial systems

Prepared by:
Nicole P. Anderson, Field Crops Extension Agent/Assistant Professor, Oregon State University.

Funding for this publication was provided by:
OREGON CLOVER COMMISSION
P.O. Box 2042, Salem, OR 97308-2402
503-370-7019, Fax: (503) 587-8063
Email: info@profadminserv.com
Web: www.oregonclover.org

Figure 2. A mixture of annual ryegrass and crimson clover in a soybean/corn rotation in northern Indiana.

Selected References

The author gratefully acknowledges reviews of this publication provided by:
James J. Hoorman – Ohio State University
Mark E. Mellbye – Oregon State University
Dale R. Mutch – Michigan State University
Michael D. Plumer – University of Illinois
Dan L. Towery – Ag Conservation Solutions, LLC
Scott I. Utley – University of Georgia
William C. Young III – Oregon State University

Figure 3. Suppression of tansy mustard weeds by crimson clover in corn/soybean rotation in southern Illinois.
DESCRIPTION
Crimson clover (Trifolium incarnatum L.) is a legume that has been traditionally used as a forage in the southern United States. In recent years, university researchers, extension agents and farmers have begun successfully using this rapidly growing winter annual as a cover crop or “green manure” in a variety of rotations including corn, soybeans, wheat, cotton, potatoes, snap beans, and grain sorghum. Crimson clover is also effective as a living cover crop in orchards, berry fields and vineyards because of its shade tolerance and reseeding potential. Crimson clover is adapted to cool humid conditions and tolerates most soil types making it a versatile plant that can be grown in many climatic regions. Nitrogen fixation, erosion control, improved soil quality, and weed suppression are among the many benefits that crimson clover provides as a cover crop.

NITROGEN CONTRIBUTION
Like many other legumes, crimson clover has nitrogen (N) fixing root nodules that capture atmospheric N and fix it into the soil in organic forms that are useable for the subsequent crop. Clovers and other legumes fix N into a stable form that is less susceptible to leaching. Manufactured nitrogen-based fertilizers often contain N in a very mobile form, potentially leading to significant losses if rainfall leaches soluble N into the groundwater. Documented studies report crimson clover may supply losses if rainfall leaches soluble N into the groundwater. In situ situations where soil moisture is adequate, crimson clover should be killed at least 2 weeks prior to planting a summer vegetable or grain crop to allow sufficient time for residue decomposition. Its simple taproot makes crimson clover easy to kill mechanically. In no-till, conservation, or organic situations, mowing after early bud stage will kill crimson clover, however; crimson clover can also be killed in conventional systems by moldboard plowing or with herbicides. Consult your county agent or crop consultant for recommendations. If using a herbicide, follow all label instructions.

SEEDING METHOD: Crimson clover is commonly seeded in the early fall when night temperatures are below 60° F and sufficient soil moisture is present for seed germination and establishment. Plant at least 6 weeks before the average date of the first frost to reduce heaving damage and winter-kill. Crimson clover seed may be planted with a drill, air seeder, high clearance equipment, broadcast, or aerially. As with many cover crops, crimson clover seed germinates better when drilled rather than broadcasted. If drilling, plant crimson clover seed to a depth of 0.25 to 0.5 inches below the surface. If broadcasting crimson clover seed, use light tillage tools to shallowly incorporate after broadcasting unless rain is eminent.

SEEDING RATE: Seeding rates vary with geographic location, seeding method, and planting dates. The recommended seeding rate for crimson clover is 12-20 lbs/acre drilled or 22-30 lbs/acre broadcast. Later planting dates require the higher seeding rate.

MANAGEMENT
Crimson clover will begin flowering when day length exceeds 12 hours. Maximum N is available at late bloom or early seed set. To obtain maximum N contribution, allow plants to reach the late bloom stage before killing.

KILLING: Killing time for crimson clover is determined by the planting date for the succeeding crop and/or soil moisture. If you need to maximize your soil moisture availability for the subsequent crop, kill the crimson early. In situations where soil moisture is adequate, crimson clover should be killed at least 2 weeks prior to planting a summer vegetable or grain crop to allow sufficient time for residue decomposition. Its simple taproot makes crimson clover easy to kill mechanically. In no-till, conservation, or organic situations, mowing after early bud stage will kill crimson clover, however; crimson clover can also be killed in conventional systems by moldboard plowing or with herbicides. Consult your county agent or crop consultant for recommendations. If using a herbicide, follow all label instructions.

RESEEDING: Crimson clover is available in hard-seeded and soft-seeded varieties. Hard-seeded varieties are ideal for self-reseeding in orchards and other perennial cropping systems. These varieties do not germinate until fall if seed is set in late spring. Germination will occur when adequate soil moisture is present.